
1
American Institute of Aeronautics and Astronautics

AIAA 2001-4718

THE USE OF CLUSTER COMPUTER SYSTEMS FOR NASA/JPL APPLICATIONS∗

Tom Cwik, Gerhard Klimeck, Charles Norton, Thomas Sterling, Frank Villegas and Ping Wang
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109
cwik@jpl.nasa.gov

∗ Copyright ©

ABSTRACT

The application of cluster computer systems has
escalated dramatically over the last several years. Driven
by a range of applications that need relatively low-cost
access to high performance computing systems, clusters
computers have reached worldwide use. In this paper we
outline the results of using three generations of cluster
machines at JPL for a select set of applications drawn
from a larger development effort. The applications
include those for science data processing, for physics-
based modeling of engineering and scientific systems
and for applications used in integrated design
environments where clusters can greatly reduce turn-
around time. Results show the effects of CPU
performance, network bandwidth and latency and IO to
storage devices for these applications. It is concluded
that these applications running on cluster computers can
be introduced into operational systems, as well as used
in research and development settings.

INTRODUCTION

The development, application and commercialization of
cluster computer systems have escalated dramatically
over the last several years. Driven by a range of
applications that need relatively low-cost access to high
performance computing systems, cluster computers
have reached worldwide acceptance and use. A cluster
system consists of commercial-off-the-shelf hardware
coupled to (generally) open source software. These
commodity personal computers are interconnected
through commodity network switches and protocols to
produce scalable computing systems usable in a wide
range of applications. First developed by NASA
Goddard Space Flight Center in the mid 1990s, the
initial Caltech/JPL development resulted in the Gordon
Bell Prize for price-per-performance using the 16 node

machine Hyglac in 19971. Currently the JPL High
Performance Computing Group uses and maintains
three generations of clusters including Hyglac. The
available hardware resources include nearly 100 CPUs,
over 70Gbytes of RAM, and over 600Gbytes of disk
space. The individual machines are connected via
100Mbit/s networks with 2.8Gbit/s networks coming
on-line shortly.

Though the resources are relatively large, the system
cost-for-performance allows these machines to be treated
as ‘mini-supercomputers’ by a relatively small group of
users. Application codes are developed, optimized and
put into production on the local resources. Being a
distributed memory computer system, existing
sequential applications are first parallelized while new
applications are developed and debugged using a range of
libraries and utilities. Indeed, the cluster systems
provide a unique and convenient starting point to using
even larger institutional parallel computing resources
within JPL and NASA.

A wide range of applications has been developed over
the span of three generations of cluster hardware. Initial
work concluded that the slower commodity networks
used in a cluster computer (as compared to the high-
performance network of a non-commodity parallel
computer) do not generally slow execution times in
parallel applications2. It was also seen that latency
tolerant algorithms could be added to offset the slower
networks in some of the less efficient applications.
What followed was the development or porting of a
range of applications that utilized the clusters resources.
End benefits include greatly reduced application
execution time in many cases, and the availability of
large amounts of memory for larger problem sizes or
greater fidelity in existing models. The applications can
be characterized into the following classes

2
American Institute of Aeronautics and Astronautics

• science data processing: these applications
typically exploit the available file systems and
processors to speed data reduction. Examples
include the MARSMAP software for producing
Mars mosaic maps from individual camera
image frames and the radiative transfer code
MODTRAN ported to clusters and other
parallel machines3.

• physics-based modeling: these applications
typically use large amounts of memory and can
stress the available network latency and
bandwidth. Applications include outer-planet
atmospheric modeling using grid-based
methods; nanotechnology models for electronic
structure calculations of quantum dots4; and
electromagnetic models of antennas and infrared
filters for observational instruments5.
Supporting libraries for models can also
exploit the cluster resources. MATPAR, a
parallel extension to MATLAB has been
developed for cluster machines6. For grid-based
models, an adaptive mesh library that refines
and distributes the computational grid onto the
processors is an application that has especially
complex communication and computational
characteristics.

• design environments: cluster computer
resources can be integrated into larger software
systems to enable fast turnaround of specific
design or simulation components that
otherwise slow the design cycle. The integrated
millimeter-wave antenna design environment
MODTool uses a cluster computer for time-
expensive diffraction calculations while
thermal, structural and CAD components are
executed elsewhere7. In a related application,
once a model is parameterized, stochastic
optimization methods such as a genetic
algorithm are executed on the cluster.

The heavy use of clusters for a variety of applications
requires the development of a cluster operation and
maintenance infrastructure. This includes the use of
commercial or open source tools and libraries. Key
components involve the integration of message passing
libraries (MPI) with a variety of compilers, queuing
systems for effective resource utilization, utilities to
monitor the health of the machine and the use of
networked file systems attached to the cluster.

The rest of this paper describes the cluster machines
used for a wide variety of applications, and then

discusses three applications in more detail. The
application and algorithms, parallelization needed for
use with the cluster and performance gains in using the
clusters described above will be briefly outlined.

COMPUTING ENVIRONMENT

Three generations of cluster machines have been
assembled within the High performance Computing
Group at JPL. The first machine was built in 1997 and
is named Hyglac. It consists of 16 Pentium-Pro
200MHz PCs, each with 128 MBytes of RAM and it
uses 100Base-T Ethernet for communications. Each
node contains a 2.5 GB disk. The nodes are
interconnected by a 16 port Bay Networks 100Base-T
Fast Ethernet switch. Nimrod, assembled in 1999,
consists of 32 Pentium-III 450MHz PCs, each with 512
MBytes of RAM and it also uses 100BaseT Ethernet for
communications. An 8 GB disk is attached to each
node. The nodes are interconnected by a 36 port 3-Com
SuperStack II 100Base-T switch. The third generation
machine, assembled in 2001, is named Pluto and
consists of 26 Pentium-III Dual-CPU 800Mhz nodes (a
total of 52 processors in all), each node has 2 GBytes
of RAM. A 10 GB disk is attached to each node. The
nodes are interconnected by the new 32 port Myricom
X2000 networking hardware, capable of 240 MByte/s
bi-directional bandwidth, and greatly reduced latency as
compared to the 100Base-T Fast Ethernet switches.

All of the above clusters run the Linux operating
system and use MPI for message passing within the
applications. A suite of compilers are available as well
as math libraries and other associated software. Since
the machines are not used by a very large set of users,
scheduling software has not been a priority. The
Portable Batch System (PBS) for queuing jobs is
available on Pluto8. Besides the compute nodes listed
for each machine a front-end node is also attached to the
switch and consists of identical hardware as the compute
nodes with the exception of having larger disks, an
attached monitor, CD drive and other periphererals.

DATA PROCESING: MAPPING MARS

The Mars Exploration Rovers (MER) to be launched in
2003 rely on detailed panoramic views for their
operation. These include :

1. Determination of exact location
2. Navigation
3. Science target identification
4. Mapping

3
American Institute of Aeronautics and Astronautics

Currently the rover cameras gather individual image
frames at a resolution of 480x640 pixels and are stitched
together into a larger mosaic. Before the images can be
stitched they may have to be warped into the reference
frame of the final mosaic because the orientation and the
individual images change from one to the next, and
because several final mosaics might be assembled from
different viewpoints. The algorithm is such that for
every pixel in the desired final mosaic a good
corresponding point must be found in one or more of
the original rover camera image frames. This process
depends strongly on a good camera model and a good
correlation of the individual pixels with respect to their
position in the three spatial dimensions (x,y,z).

Summary
The original algorithm executes in about 90 minutes,
calculating a complete mosaic on a 450MHz Pentium
III PC running Linux. It was desired to reduce this
processing time by at least an order of magnitude.
Initial algorithmic changes to the original software were
first performed. Using MPI the modified mosaicing
software was parallelized and run on the clusters. The
processing time was reduced to a range of 1.5—6
minutes depending on the specific image and the
processor speed used in the cluster.

The images shown shown in Figure 1 were taken from
a Mars Exploration Rover field test in the beginning of
May 2001. The mosaic generation for this particular
image (note that only about 1/4 of it is shown) took
3.3 minutes on 16 CPUs of Nimrod.

General Algorithm Changes
The original mosaic algorithm was written for machines
that have a limited amount of RAM available. That
restriction limited the number of individual images that

can be kept in memory during the mosaicing process.
With about 256 MB on a CPU once can safely read in
all of the about 130 images and keep a copy of the final
mosaic in RAM. The algorithm was changed to enable
this with the aid of some dynamic memory allocation.

Timing on one CPU
The original algorithm took about 90 minutes on a
single 450MHz Pentium III CPU to compose 134
images into a single mosaic. Algorithm changes result
in a reduction of the required CPU time to about 48
minutes. Running the same algorithm and problem on a
800MHz CPU results in a time reduction to about 28
minutes (Figure 2).

Parallelization
The parallel algorithm divides the targeted mosaic into
N slices, where N is the number of CPUs, as indicated
by the blue lines in Figure 1. Once the each CPU has
completed its tasks it reports the image to the manager
CPU, which then patches the slices together into one
image and saves it to disk.

Timing on multiple CPUs
Parallelization of the mosaicing algorithm is shown on
the 800MHz cluster and on the 450MHz cluster. The
dot-dashed line shows the ideal speed-up. The actual
timings follow the linear scaling with deviations from
the ideal attributed to load balancing problems and data
staging problems. The 800 MHz curve extends to a
larger number of CPUs since the 800 MHz cluster has
twice as many CPUs available.

Figure 1: Mosaic generation from 123 individual
image frames. The horizontal lines in the
panorama (lower image) indicate the strips of the
image distributed to the cluster processors.

1

10

100

1 10

450 MHz Orig
450 MHz
800 MHz
800 MHz local data
Ideal

T
im

e
(m

in
ut

es
)

CPU (log scale)

90min original

5min

48min

28min

Algorithm
Changes
CPU
Speed-up

2.5min

1.7min
Achieved a 36x and 52x speed-up

Figure 2: Timing examples for the assembly of 123
individual images into a single mosaic for two
different clusters. Differences between the 800MHz
and 800 MHz local data indicate changes in how the
data is written (see text).

4
American Institute of Aeronautics and Astronautics

Timing Analysis on 8 CPUs
Figure 3 shows the times that are consumed on the
problem set-up, the reading of the data, the desired
image processing, the communication between CPUs
and the writing to disk for two different clusters
(450MHz and 800MHz). The good news is that most of
the time is spent on the actual image processing. The
bad news is that the different CPUs work on the
problem for significant periods of time. One solution to
the load balancing problem is a more careful analysis of
the image data staging in the search algorithm portion
of the processing. An approach that is more independent

of the image sequencing and data staging can be a
master-slave approach, where the work is dished out to
the worker CPUs in smaller chunks in an asynchronous
fashion. As some CPU's finish their chunk before
others, they can start working on the next chunk.

It is interesting to note that the load balancing problem
is relatively speaking smaller for the faster CPUs as
compared to the slower CPUs. The apparently large
communication cost on CPU 0 includes the time for the
waiting of the data from CPUs 6 and 7.

Timing Analysis on 39 CPUs with
Central Data
The parallel algorithm deteriorates strongly starting at
24 CPUs. This can be attributed to data staging
problems to all the CPUs. If the images are copied to
the local disks on each node of the cluster the overall
performance is significantly improved (crosses). The
total processing time is reduced from 2.5 to 1.7
minutes. This comes at the expense of about 7minutes
to copy the data to the local disks via the UNIX rcp
process. This implies that if the algorithm is to be run
on that many CPUs a different method and/or hardware
must be found to move data to the local disks.

Figure 4 shows a diagram for the time spent in the set-
up, the initial file reading, image processing,
communication and final image writing for each
individual CPU of Pluto. With this many CPUs only
about 1.5 minutes is spent on the actual image
processing. The remaining 0.8 minutes are mostly
spent on set-up and reading of the original images. The
reading of all the input images by all the CPUs from
the front-end disk leads to a dramatic bottleneck of the
overall computation.

Timing Analysis on 39 CPUs with
local /tmp data
The heavy disk load on the front-end can be reduced by
copying all the images to the local /tmp disk of the
computation nodes. Figure 4 (bottom) shows the virtual
elimination of the previously significant read time.
Interestingly we have also significantly reduced the time
declared as set-up. We believe that this is due to the fact
that during the set-up time all the input files are probed
for their individual size and coordinates, which are
needed to define the size of the final mosaic. This
double access to the images became apparent to us in
the analysis of this data. Additional improvements to
the algorithm to only read a file and/or its header once
are clearly possible. The copying of all the individual
images to the local disks comes with a significant price

0

2

4

6

8

10

0 1 2 3 4 5 6 7

Setup
Read
Image
Comm/Write

T
im

e
(m

in
ut

es
)

CPU

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

Setup
Read
Image
Comm
Write

T
im

e
(M

in
ut

es
)

CPU

800 MHz, 6.25 minutes total

450 MHz, 10.5 minutes total

Figure 3: Timing analysis for runs on 8 CPUs on
the 450MHz and 800MHz clusters. Times for set-
up, image reading, image processing,
communication and final image writing are shown.

5
American Institute of Aeronautics and Astronautics

in performance: a rcp shell command takes about 7
minutes to execute. Clearly that is not an efficient
solution. Possibly faster I/O hardware such as a RAID
disk or a parallel file system might be solutions to this
problem.

Looking at the final performance data with the local data
one can see again a load balancing problem. However,
squeezing out the last 10-20% performance by balancing
this load and reducing the total time from 1.5 minutes
to perhaps 1.3 minutes may prove to be laborious and
not necessary as the platform this code will be run on
during the Mars Exploration Rover mission is not
completely defined at this time.

PHYSICS BASED MODELING:
SIMULATING PLANETARY
THERMAL CONVECTION

Thermal convective motion driven by temperature
gradients often plays an essential role in the behavior of
geophysical and astrophysical systems. Obtaining a

detailed understanding of their role is at the core of
many important problems in the planetary sciences,
including the dynamics of atmospheres, stellar
convection, and convection in gaseous protostellar
disks. A software package is being written to solve the
differential equations of three-dimensional thermal
convection for an incompressible fluid. This package
uses a parallel-processing, finite volume numerical
scheme. The equations of conservation of momentum,
and energy are integrated over macroscopic control
volumes on a normal, staggered grid. Upwind
interpolation functions are used to prevent spurious
numerical oscillations at high Rayleigh numbers. The
resulting discretized equations, including a pressure
equation that demands most of the computation time,
are solved by a parallel-processing, multigrid method.
The multigrid aspect of the method involves the use of
a hierarchy of grids of different mesh sizes to obtain a
solution on the finest grid. It has been proven, both
theoretically and practically, that the multigrid aspect
affords rapid convergence on a solution. The program
could be used, for example, to predict oceanic
convection currents and modeling outer planet
atmospheres. The effectiveness of the program has been
demonstrated by applying it to test cases on several
parallel-computing systems.

Table 1 shows the real time comparison among the
three different cluster systems with different number of
processors. A canonical problem of computing the
velocity field for a Rayleigh number of 5x107 in air and
a computational grid size 128x128x128 was solved. The
Pluto system gives the best performance data among
those three machines because of its fast processors and
network used. The difference of the wallclock time is
very consistent with the difference of hardware.

Table 1. Wallclock time (secs) for solution of
canonical convection problem executing on
various systems and number of processors.

 PEs
System

1 2 4 8 1 6 3 2

Hyglac
200 MHz

543 390

Nimrod
450 MHz

665 417 267 196 169

Pluto
800 MHz

385 257 151 97 72 57

0

0.5

1

1.5

2

2.5
T

im
e

(m
in

ut
es

)

800 MHz, 39 CPU, central data, 2.4 minutes total

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
CPU

0

0.5

1

1.5

2

2.5

Comm
Write
Setup
Read
Image

T
im

e
(m

in
ut

es
)

800 MHz, 39 CPU, local data, 1.5 minutes total

Figure 4: Timing analysis on 39 CPUs running at
800MHz. Top: images are all stored on the front
end. Bottom: input images are distributed to local
/tmp disks before the processing.

6
American Institute of Aeronautics and Astronautics

PHYSICS BASED MODELING:
AN UNSTRUCTURED ADAPTIVE
MESH REFINEMENT LIBRARY

Parallel adaptive methods support the solution of
complex problems using grid-based techniques. One of
the main characteristics of solving these problems on
parallel computers is that the data sets tend to be large
and unstructured. The communication requirements are
also very demanding so most simulations have typically
been performed on large traditional supercomputing
systems.

The cost and availability of clusters, however, have
drawn attention to their usage for such problems.
Historically, the earliest production clusters were
suitable for small-scale tests and software development,
but most of the major simulation runs would occur
elsewhere. Over the years, however, improvements in
CPU performance and networking have allowed more
powerful clusters to be constructed advancing their use
from basic development platforms to full-production
design and simulation environments. We have
experienced this migration starting with, Hyglac
moving through to the more advanced cluster, Nimrod,
and most recently onto the very powerful machine
Pluto.

Given the advances exhibited by these systems it is
interesting to review how far we have come in cluster
technology for scientific applications.

Figure 5. Artery mesh consisting of 1.8 million
tetrahedral elements.

Figure 5 shows the adaptive refinement of an artery

mesh segment using our PYRAMID parallel
unstructured adaptive mesh software. The mesh contains
1.8 million elements where the processor partitioning is
illustrated. The memory requirements for this mesh
exceed the capability of Hyglac, so we immediately see
that advances in cluster hardware have made this
adaptive refinement possible.

Figure 6. shows the performance for Nimrod and Pluto
as various regions of the mesh are adaptively refined. In
all cases there is a performance improvement when
comparing the results across these machines. A
significant amount is simply due to the increased clock
speed of Pluto over Nimrod. Although the network for
Pluto is much faster it does not have an appreciable
effect for this particular simulation. This is largely due
to the performance of Myrinet when the network is
stressed, which is typical of adaptive meshing
problems9.

Figure 6. Performance comparison for artery mesh
refinement across cluster systems.

The Muzzle-Brake Mesh, which has been refined and is
illustrated in Figure 7 can run on Hyglac through the
first two refinements. There is insufficient memory for
further refinement as only 8 processors were available
for the simulation. (Hyglac has not seen much use since
our newer systems came on line.)

7
American Institute of Aeronautics and Astronautics

Figure 7. Muzzle-brake mesh. Different grey-scales
indicate mesh elements residing on different processors
of the cluster.

The performance results across three adaptive
refinements (Figure 8) show a very significant
improvement as the more powerful systems are used.
The improvement scales beyond simple CPU clock
rates and, in the case of Pluto’s faster network, indicates
that a combination of factors can benefit this simulation
as well.

The initial Muzzle-Brake mesh contains 34,214
elements and approximately 1.2 million elements by
the third refinement. The number of elements created
during each refinement level matched exactly for Hyglac
and Pluto, but was slightly different for Nimrod. The
manner in which elements are created due to the
partition boundaries can introduce small inconsistencies,
but they should have been equivalent in this case as the
same partitioning library was used on all architectures
in these test cases. The differences were negligible and
did not seem to contribute much to the performance
differences.

Figure 8. Performance comparison for muzzle-brake
mesh across 3 levels of refinement.

The next performance chart (Figure 9) shows the results
from the generation of an earthquake mesh using our
adaptive refinement library. In this case, all systems can
be used where the total number of elements created is
approximately 550,000. (In this instance, the results
were identical between Pluto and Nimrod, but slightly
different for Hyglac in this third level of refinement.

Figure 9. Performance comparison for earthquake mesh
across systems.

Here, the performance improvement is largely in-line
with the CPU clock speed, but this improvement is a
direct result of advances in cluster technology.

8
American Institute of Aeronautics and Astronautics

ACKNOWLEDGEMENTS

The Mars imaging work was sponsored by the TMOD
technology program under the Beowulf Application and
Networking Environment (BANE) task. The original
VICAR based software is maintained in the Multi-
mission Image Processing Laboratory (MIPL). This
work was joint with Myche McAuley, Bob Deen, and
Eric DeJong.

REFERENCES

[1] Michael S. Warren, John K. Salmon, Donald J.
Becker, M. Patrick Goda, Thomas Sterling, Grégoire S.
Winckelmans, Pentium Pro Inside: I. A Treecode at 430
Gigaflops on ASCI Red, II. Price/Performance of
$50/Mflop on Loki and Hyglac, SC97 Conference
Proceedings, 1997.

[2] D. S. Katz, T. Cwik, B. H. Kwan, J. Z. Lou, P. L.
Springer, T. L. Sterling and P. Wang, “An Assessment
of a Beowulf System for a Wide Class of Analysis and
Design Software,” Advances in Engineering Softw, vol.
29, pp. 451-461, 1998.

[3] P. Wang, K. Liu, T. Cwik, and R. Green,
MODTRAN on supercomputers and parallel computers,
to appear in the J. Parallel Computing.

[4] Gerhard Klimeck, R. Chris Bowen, Timothy B.
Boykin, Carlos Salazar-Lazaro, Thomas A. Cwik, and
Adrian Stoica "Simulator Development for
Nanoelectronic Devices",3rd NASA Workshop on
Device Modeling, NASA Ames Research Center,
August 26-29, 1999.

[5] T. Cwik, S. Fernandez, A. Ksendzov, C. La Baw,
P. Maker, and R. Muller. Design of Multi-Bandwidth
Frequency Selective Surfaces for near Infrared Filtering.
in SPIE's 43rd Annual Meeting on Optical Science,
Eng ineering, and Instrumentation. 1998. San Diego,
CA: SPIE.

[6] Paul L. Springer, "Matpar: Parallel Extensions for
MATLAB," Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications, v. III, pp. 1191-1195, July 1998.

[7] Tom Cwik, Daniel S. Katz and Frank Villegas
Integrated Design and Simulation for Millimeter-Wave
Antenna Systems, 2001 IEEE Aerospace Conference,
March 12 –16, 2001.

[8] http://www.OpenPbs.org/ .

[9] C. D. Norton and T. A. Cwik. “Early Experiences
with the Myricom-X2000 Switch on an SMP Beowulf-
Class Cluster for Unstructured Adaptive Meshing”.
(Submitted to IEEE Cluster 2001.)

